Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis.

نویسندگان

  • Filip A Konopacki
  • Nadia Jaafari
  • Dan L Rocca
  • Kevin A Wilkinson
  • Sophie Chamberlain
  • Philip Rubin
  • Sriharsha Kantamneni
  • Jack R Mellor
  • Jeremy M Henley
چکیده

The surface expression and regulated endocytosis of kainate (KA) receptors (KARs) plays a critical role in neuronal function. PKC can modulate KAR trafficking, but the sites of action and molecular consequences have not been fully characterized. Small ubiquitin-like modifier (SUMO) modification of the KAR subunit GluK2 mediates agonist-evoked internalization, but how KAR activation leads to GluK2 SUMOylation is unclear. Here we show that KA stimulation causes rapid phosphorylation of GluK2 by PKC, and that PKC activation increases GluK2 SUMOylation both in vitro and in neurons. The intracellular C-terminal domain of GluK2 contains two predicted PKC phosphorylation sites, S846 and S868, both of which are phosphorylated in response to KA. Phosphomimetic mutagenesis of S868 increased GluK2 SUMOylation, and mutation of S868 to a nonphosphorylatable alanine prevented KA-induced SUMOylation and endocytosis in neurons. Infusion of SUMO-1 dramatically reduced KAR-mediated currents in HEK293 cells expressing WT GluK2 or nonphosphorylatable S846A mutant, but had no effect on currents mediated by the S868A mutant. These data demonstrate that agonist activation of GluK2 promotes PKC-dependent phosphorylation of S846 and S868, but that only S868 phosphorylation is required to enhance GluK2 SUMOylation and promote endocytosis. Thus, direct phosphorylation by PKC and GluK2 SUMOylation are intimately linked in regulating the surface expression and function of GluK2-containing KARs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification and movement

Kainate receptors (KARs) are tetrameric glutamate-gated ion channels composed of combinations of the subunits GluK1-5. Depending on their precise localization and subunit composition, KARs can regulate neurotransmitter release, synaptic function and neuronal excitability. Because of these diverse roles, the regulated and precisely targeted trafficking of KARs is of crucial importance to neurona...

متن کامل

SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation.

Protein SUMOylation has been implicated in the pathogenesis of ischemic stroke. However, the underlying mechanisms remain unclear. Here, we found that global brain ischemia evokes a sustained elevation of GluK2 SUMOylation in the rat hippocampal CA1 region. Over-expression of wild-type GluK2, but not SUMOylation-deficient mutant, significantly increased the activity of MLK3 and JNK3 after kaina...

متن کامل

Assembly, Secretory Pathway Trafficking, and Surface Delivery of Kainate Receptors Is Regulated by Neuronal Activity

Ionotropic glutamate receptor (iGluR) trafficking and function underpin excitatory synaptic transmission and plasticity and shape neuronal networks. It is well established that the transcription, translation, and endocytosis/recycling of iGluRs are all regulated by neuronal activity, but much less is known about the activity dependence of iGluR transport through the secretory pathway. Here, we ...

متن کامل

Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner,...

متن کامل

Trafficking of Kainate Receptors

Ionotropic glutamate receptors (iGluRs) mediate the vast majority of excitatory neurotransmission in the central nervous system of vertebrates. In the protein family of iGluRs, kainate receptors (KARs) comprise the probably least well understood receptor class. Although KARs act as key players in the regulation of synaptic network activity, many properties and functions of these proteins remain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 49  شماره 

صفحات  -

تاریخ انتشار 2011